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Simple explicit formulas are derived for an evaluation of the elements of the co- 
variance matrix needed for the calculation of statistical errors which arise when some 
optimum linear estimates of some parameters are to be obtained from experimental 
data. The considered linear estimates are of the Neumann-David type, which represents 
a generalization of the least squares estimate. These formulas are related to the case 
of polynomial nonrandom data components with a stationary random component, the 
correlation function of which may be approximated by an exponential function. The 
results of this paper can be used during the design stage of the preparation of an ex- 
periment for the choice of parameters of experimental facility, such as the observing 
interval, number of experimental points, etc., as the formulas characterizing errors in 
results of data treatment are functions of these parameters. 

1. THE NEUMANN-DAVID ESTIMATE 

Let us consider an (n + I)-dimensional data vector y, 

y = xa +:, (1) 

where X is an (n + 1) x m full rank nonrandom matrix, a is an unknown m x 1 
nonrandom vector, and : is an (II + 1) x 1 random vector representing some 
statistical errors, noise, etc. 

The result z of a linear transformation 94(y) of the data vector y is to be deter- 
mined, 

z = L?{“(y). (2) 

An exact determina$on of the result z is impossible because of the presence of 
random component x. Therefore, a linear estimate I, 

f=w.y, (3) 
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using an estimator w, is sought. A mean E(i) of the random component ‘x can be 
included into the component Xa. One can therefore suppose 

E(i) = 0, (4) 

where the symbol E{*) denotes the mathematical expectation. If the unbiasness 
of the estimate 2 is required, 

E(Z) = 0, (5) 

then the following equation should hold: 

w*X=p, (6) 

where the 1 x m nonrandom vector p characterizes the operation to be performed 
on the nonrandom component of the data vector, 

9{Xa} = LY{X>a = p * a (7) 

for an arbitrary vector a. 
It follows from the Neumann-David theorem [I] that among all linear unbiased 

estimates, the estimate 

f = p(XTB-lX)-l XTB-ly (8) 

has a minimum variance equaling 

D, = p(XTB-IX)-l pT, (9) 

where the (n + 1) x (n + 1) matrix B is a diagonal matrix having on the main 
diagonal the variances of individual components of the data vector. Such a model 
comes into consideration if these components are mutually uncorrelated. A 
generalization of the Neumann-David theorem is given in Ref. [2] covering all 
possible cases of unbiased linear estimates, including a more general model of data 
vector (1). As shown in Ref. [2], a more general definition of the matrix B appearing 
in Eqs. (8) and (9) can be used, 

B = E{iTi}, (10) 

being valid also for correlated components of the random vector :. 
As follows from the optimal&y of the Neumann-David estimate, no linear data 

handling process exists satisfying the constraint (6) of unbiasness and giving an 
estimating error less than D, . Thus Eq. (9) represents an accuracy limit for the 
given problem. 
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Let us define a special type of linear operation defined as 

where 

for r = 0, 
for I # 0. (12) 

In this case, an estimate 5, of the component a, of the vector a can be obtained. 
Combining the estimates Z8 for all s = l,..., m into a vector 5 one obtains the 
vector estimate 

ii = (XTB-1X)-l XTB-ly, (13) 

which is the well-known Gauss-Markov estimate. 
The covariance matrix of this estimate follows from Eq. (9): 

H = G-1 zz [E{g . ST}]-1 = [XT&1X1-1. (14) 

Conversely, if the covariance matrix (14) of the Gauss-Markov estimate is 
available, then the variance (9) of a Neumann-David estimate for an arbitrary 
type of linear operation can be easily determined. It is the aim of this paper to 
evaluate the elements of the covariance matrix (14) for some important practical 
cases. 

2. INVERSION OF THE COVARIANCE MATRIX 

2.1. Polynomial Base 

The matrix X defines a base of a subspace of the (n + 1)-dimensional vector 
space occupied by data vectors [2]. We shall consider the often occurring special 
case of the polynomial base with uniformly distributed nodes, for which the 
element of the matrix X is 

x,j = (St,)+‘, (s= O,l,..,, n j= 1,2 ,..., m), (15) 

where t, is a given positive constant. For it 3 m the rank of matrix X is m. We 
suppose the regularity of the matrix B. Then the inverse matrix G-l exists at least 
theoretically. Unfortunately, it is not easy to calculate this inverse for cases which 
have a large value for the parameter m and which have a great number of nodes. 
In such cases, the order of magnitude of smallest and greatest absolute values of 
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elements of the matrix G differ in such a degree that the ordinary word length of 
a computer can be insufficient for the inversion procedure. Also, for a great number 
of nodes, the high requirements as to the memory and operational time of a com- 
puter involve difficulties. On the other hand, it is often interesting to have at least 
an estimate of the inverse matrix in an analytical form as it can be useful for the 
consideration of the statistical errors of the optimum data treatment or for the 
variance analysis. Thus, there are reasons for an analytical solution. 

Johnson [3] has shown the approximate analytical calculation of the variance of 
the optimum discrete filter output for the uncorrelated case. It will be shown below 
that an explicit analytical approximate formula can be found for every element of 
the inverse matrix for the uncorrelated case, as well as for a simple but important 
case of correlated random component corrupting the treated data. 

2.2. Uncorrelated Case 

For an uncorrelated stationary random component having unitary variance the 
equation B = E (16) holds, where the matrix E is the unity matrix. 

The matrix G characterized by Eqs. (14) and (15) has the following elements: 

(17) 

where 

p, Y = 1, 2 ,..., m. 

Letting H denote the inverse of the matrix G, we have 

GH= E. (18) 

This matrix equation can be written as m vector equations having the form 

Ghi = hi * Ui 7 (19) 

where the m-dimensional vector hi represents the i-th row or column of the symme- 
trical inverse matrix Hand where the vector ui has elements 

with the same d, as in Eq. (12). It is reasonable to change the scale of the k-th 
component hi, of the unknown vector hi according to the formula 
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and to divide the s-th equation of the system (19) by the number (nt$-l. The 
resulting system is 

(gll/wo>l)fil + .** + hn/(n~o)m)fim = 0 
. . . . . . . . . 0 

kil/~~~O>“)hl + .-- + (gim/(nto)i+“-l)Sim 1 l/(nrlp (22) 

where 

i = I,..., m. 

It is well-known that 

for q = 0, 

q(q - l)(q -2jnq-3 . . . 
(23) 

720 
for q -# 0. 

For a particular value q, the term containing rz” is to be omitted, the last term of 
the series contains rzl or n2. Therefore, 

lim (gDr/(nto)p+‘-l) = l/(t,(p + r - 1)). n-t,= (24) 

Thus, for a sufficiently great number of nodes the following system of approximate 
equations holds: 

.fi/l + *a* -kfimlm = 0 
. . . . . . . . . 0 

Al/i + a-* +fiJ(m + i - 1) 1 to/(nro)i-l (25) 
. . . . . . . . . = 0 

fil/m + *** +fiJ(2m - 1) = 0. 

This system of equations can be solved using an idea similar to that used in 
calculating the orthogonal polynomials [4]. The sum of the terms in the s-th 
equation would be 

fill(s) i-fi~/(s -t 1) + --a +h& + m - 1) = QJ(s(s + 1) -a* (s + m - l)), 
(26) 
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where 

es = {Yo(m + i - I)!/((nt,)i-l (i - l)!) 
for s # i, 
for s = i. 

The condition (27) will be satisfied by the quotient Q8 having the following form: 

(m + i - l)! (S - I)(s - 2) ... (s - i + I)(s - i - 1) *.. (S - m) 
Qs = (nf$--l (i _ 111 (i - I)(i - 2) ... (+1)(-l) ... (i - m) * 

Multiplying Eq. (26) by the factorial (m + s - I)! and substituting 

sfk-l=O 
we get 

(28) 

(-l)i+“-2 (m + i - l)! (m + k - l)! 
(i+k-l)(m-k)!(m-i)![(k-l)!(i-l)!]2’ (29) 

The expression (29) is the first approximation to the actual value hik . It is valid only 
for a sufficiently great number of nodes n. The absolute value of the approximation 
error decreases with n increasing. A second approximation for the uncorrelated 
case can be obtained as a special case from Eq. (37) of the correlated case. 

2.3. Correlated Case 

If the corrupting random components of the treated data are correlated and if 
the correlation between two components ‘;i and &+7 can be approximated by the 
function 

E(&!&+,) = ko2 exp( -T/T), (30) 

where T is a positive constant, then the covariance matrix B can be shown to have 
the elements 

bij = k,2qW (i, j = 0, l,..., n), (31) 
where 

q = W-W), (32) 

the positive constant t,, being the same as in Eq. (15). Equation (31) is valid for a 
regular distribution of nodes, i.e., when Eq. (15) holds. The inversion of this 
covariance matrix can be performed analytically and the element bii of the inverse 
matrix B-l can be calculated [5] according to the formulas 

1 + q2(1 - 4(n-dlko2U - 43 for i = j, 
for (i-j/ = 1, (33) 
for I i--j1 > 1. 
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In this case, an element of the matrix (14) can be written in the form 

1 

i=n 
g,,, = tg+‘-2k;2(1 - q2)-l (1 + q2) C ip+r-2 

i=O 

i=n 
-q2(nP+'-2 + dD+7-2) - q C [(i - 1),-l P-l 

i=O 
(34) 

+ P-l(i - 1)‘-1] + q[(-l)“-l d,-, + (-l>‘-’ d,-,lt. 

Using Eq. (23) again and neglecting all terms of the order l/n2 and higher, one 
obtains an approximation valid for a large value n, 

ELv/(~~oY+7-1 = ki2(nto)-’ {c/(p + r - 1) + d,+,-, + 1}/2, (35) 

0 lo 100 -m 

FIG. 1. The relative errors of the approximating formulas (37), (full line) and (40) (dashed 
line), for the case m = 5, p = Y = 1. 
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where 

c = 2n(l - q)/(l + q) = 2n[l - exp(-@)I/[1 + exp(--1,/T)]. (36) 

Solving Eq. (18) where the elements of the matrix G have the form (35) one gets the 
second approximation to the element h,, for the correlated case, 

iiD7 = 2k&zt0)-(J+7--2) h - %&ll(C + sI)l/c~ (37) 

where 

(38) 

It is obvious from Eq. (35) that the error of the approximation (38) for a great 
value n will be a function of the parameter c. Such dependence is shown in Fig. 1 
by the full line for the case m = 5, p = r = 1. 

3. APPLICATION 

The quantity Tin Eq. (30) is a characteristic of a physical object and as a rule it 
cannot be modified by an experimenter. But the quantities to and n are important 
parameters closely connected with the hardware of an experimental facility and 
their choice influences the economy of an experiment. The approximate formulas 
mentioned above may be of help for designing an experiment. 

3.1. Fixed interval between nodes 

Let us consider both parameters t, and T as equal to given constants. Defining 
another constant 

cl = 31 - exp(--tdT)1/[1 + exp(--to/TN, (39) 
and considering a case with a sufficiently high value n, one obtains from Eqs. (37) 
and (38) a simple formula 

EpT = 2k02(nt0)-(P+r-2) 
! 
&,/cg 

The relative error of this approximation is demonstrated in Fig. 1 by the dashed 
line for the same case as above and for 

c = cln. (41) 
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The quantity 
T,, = nt, (42) 

may be called “the observation interval.” Any increase in this quantity is undesir- 
able as a rule because of the waste in time or in the increased size of the experi- 
mental facility. The increasing II in itself has some negative consequences as the 
volume of experimental work becomes greater and the treatment requires greater 
capacity of the computer. Thus, the increasing n in Eq. (37) or (40) improves the 
accuracy of the data handling results but involves other difficulties. 

3.2. Weak correlation 

For a fixed value n one gets from Eq. (36) a limit 

lim c = 2n. 
TolT+m 

(43) 

This case may be characterized as a weak correlation of the data vector components. 
It follows from Eq. (43) that for a fixed number of experimental points an increase 
in the observation interval brings only a limited effect in the errors of the results of 
the data treatment. The limit (43) corresponds to an uncorrelated case. 

3.3. Accuracy limitations for a fixed observation interval 

Let us consider the case with a constant value of the observation interval T,, . 
In this case, the interval t,, decreases with an increasing number of experimental 
points (see Eq. (42)) so that 

lj’rmm c = TO/T. w 
Substituting this ratio into Eq. (37) one obtains the limit values of the elements of 
the covariance matrix. This case corresponds to an unlimited density of 
experimental points within a given observation interval. In this case, all information 
contained in the observed part of the experimental curve is used to improve the 
accuracy of data treatment results. There are always practical limitations related 
to this density such as the dead time of detector or measuring channels, the finite 
size of detectors, etc. In this case, Eq. (44) together with Eq. (37) can be used for 
determining a reasonable compromise in choosing the parameter n. 
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